Proposed molecular mechanism for the action of molybedenum in enzymes: coupled proton and electron transfer.
نویسنده
چکیده
The reactions catalyzed by Mo enzymes each find the product differing from the substrate by two electrons and two protons (or some multiple thereof). The coordination chemistry of Mo suggests that there is a distinct relationship between acid-base and redox properties of Mo complexes, and that a coupled electron-proton transfer (to or from substrate) may be mediated by Mo in enzymes. Each of the Mo enzymes (nitrogenase, nitrate reductase, xanthine oxidase, aldehyde oxidase, and sulfite oxidase) is discussed; it is shown that a simple molecular mechanism embodying coupled proton-electron transfer can explain many key experimental observations. In view of this mechanism, the reasons for the use of Mo (from an evolutionary and chemical point of view) are discussed and other metals that may replace Mo are considered.
منابع مشابه
Quantum-chemical modeling of the stacking mechanism for the 1H-4H proton transfer in pyridine derivatives. A DFT study
The stacking mechanism of the 1H-4H proton transfer in 4-pyridone, 4-pyridinthione and p-aminopyridineare constructed. For quantitative description of this process by means of the quamtumchemicalmethod density functional theory (DFT) the activation energy (
متن کاملIdentification of Ubiquinol Binding Motifs at the Qo-Site of the Cytochrome bc1 Complex
Enzymes of the bc1 complex family power the biosphere through their central role in respiration and photosynthesis. These enzymes couple the oxidation of quinol molecules by cytochrome c to the transfer of protons across the membrane, to generate a proton-motive force that drives ATP synthesis. Key for the function of the bc1 complex is the initial redox process that involves a bifurcated elect...
متن کاملMultistep Surface Electrode Mechanism Coupled with Preceding Chemical Reaction-Theoretical Analysis in Square-Wave Voltammetry
In this theoretical work, we present for the first time voltammetric results of a surface multistep electron transfer mechanism that is associated with a preceding chemical reaction that is linked to the first electron transfer step. The mathematical model of this so-called “surface CEE mechanism” is solved under conditions of square-wave voltammetry. We present relevant set of results portrayi...
متن کاملNickel phlorin intermediate formed by proton-coupled electron transfer in hydrogen evolution mechanism.
The development of more effective energy conversion processes is critical for global energy sustainability. The design of molecular electrocatalysts for the hydrogen evolution reaction is an important component of these efforts. Proton-coupled electron transfer (PCET) reactions, in which electron transfer is coupled to proton transfer, play an important role in these processes and can be enhanc...
متن کاملHydrogen Bonding Networks Tune Proton-Coupled Redox Steps during the Enzymatic Six-Electron Conversion of Nitrite to Ammonia
Multielectron multiproton reactions play an important role in both biological systems and chemical reactions involved in energy storage and manipulation. A key strategy employed by nature in achieving such complex chemistry is the use of proton-coupled redox steps. Cytochrome c nitrite reductase (ccNiR) catalyzes the six-electron seven-proton reduction of nitrite to ammonia. While a catalytic m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 70 4 شماره
صفحات -
تاریخ انتشار 1973